Worksheet for 2020-05-01

Conceptual Review

Question 1. Suppose \mathbf{F} is defined on all of \mathbb{R}^{3} except at the origin, and that $\nabla \times \mathbf{F}=\mathbf{0}$. Can you conclude that \mathbf{F} is conservative?
Question 2. Parametrize the portion of the cylinder $x^{2}+y^{2}=1$ between the planes $z=0$ and $z=2+x$.

Problems

Problem 1. Let $\mathbf{F}=\langle a, b, c\rangle$ where a, b, c are constants.
Let D be the region $x^{2}+y^{2}+z^{2} \leq 1$ and let E be the solid cube $-2 \leq x, y, z \leq 2$.
(a) Compute $\iint_{\partial D} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S$ and $\iint_{\partial E} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S$.
(b) Compute $\iint_{\partial D}|\mathbf{F} \cdot \mathbf{n}| \mathrm{d} S$ and $\iint_{\partial E}|\mathbf{F} \cdot \mathbf{n}| \mathrm{d} S$.

